Abstract

BackgroundWhite matter damage is an important contributor to cognitive impairment after stroke. This study was designed to explore the beneficial effects of enriched environment (EE) on white matter recovery and cognitive dysfunction after stroke, and further explore the potential mechanism of EE on white matter recovery from the perspective of microglia and microglia-mediated neuroinflammation. MethodsMale SD rats underwent middle cerebral artery occlusion (MCAO) or sham surgery. During the MCAO operation, a laser Doppler blood flow meter was used to monitor the blood flow to ensure the success of the model. At 72 h after the operation, 3 rats were selected for TTC staining to identify the infarct size. One week after surgery, the rats were randomly assigned into four different groups—MCAO+standard environment (SE), MCAO+enriched environment (EE), Sham+SE and Sham+EE for 4 weeks. At four weeks after MCAO surgery, neurological function deficiency condition and cognitive function were assessed using Longa score and Morris Water Maze prior to euthanasia. The loss or regeneration of myelin was stained with LFB, the expression of myelin regeneration-related protein and microglia protein was quantified by western blot and immunofluorescence, and the level of inflammatory factors was measured by ELISA. ResultsEE treatment remarkably decreased the neurological deficit score, ameliorated the cognitive functional deficit in MCAO rats. Furthermore, EE alleviated white matter lesions and demyelination, increased myelin basic protein expression and decreased the number of activated microglia in the hippocampus of MCAO rats. In addition, ELISA analysis indicated that EE decreased the level of IL-1β, IL-6, which further suggests that EE may reduce the level of pro-inflammatory factors by affecting the expression of microglia marker, IBA1, provide a benefit physiological environment for myelin recovery, and improve post stroke cognitive impairment. ConclusionsOur results suggest that exposure to EE substantially reduced the damage to brain tissue caused by activation of microglia activation, decreased the level of pro-inflammatory cytokins, which may induced by microglia, protected and promote white matter recovery to improve cognitive function after stroke. Our findings also indicate exposure to EE is beneficial for patients with white matter impairment characterised by white matter disease-related inflammation.

Highlights

  • Patients with stroke often suffer from cognitive impairment after stroke

  • Our results suggest that exposure to EE substantially reduced microglia damage/activation, decreased the level of pro-inflammatory cytokins induced by microglia, protected and promote white matter recovery to improve cognitive function in injured area after stroke

  • Our findings indicate exposure to EE is beneficial for patients with white matter impairment characterised by white matter disease-related inflammation

Read more

Summary

Introduction

The prevalence of post-stroke cognitive impairment is between 20% and 80%(1). The underlying mechanism of cognitive impairment after stroke is unclear. Hippocampus and white matter lesions(WMLs) is one of the important pathogenesis of post-stroke cognitive impairment. Studies have confirmed that white matter lesions and lacunar infarction impair psychomotor speed, executive function and overall cognitive function and so on[3]. There’s no unequivocally efficacious treatment and mechanisms for promoting white matter recovery after stroke are still unclear. White matter damage is an important contributor to cognitive impairment after stroke. This study was designed to explore the beneficial effects of enriched environment (EE) on white matter recovery and cognitive dysfunction after stroke, and further explore the potential mechanism of EE on white matter recovery from the perspective of microglia and microglia-mediated neuroinflammation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call