Abstract

We investigate the ground state properties of one-dimensional hard-core bosons interacting via a variable long-range potential using the density matrix renormalization group. We show that restoring energy extensivity in the system, which is done by rescaling the interaction potential with a suitable size-dependent factor known as Kac's prescription, has a profound influence on the low-energy properties in the thermodynamic limit. While an insulating phase is found in the absence of Kac's rescaling, the latter leads to a new metallic phase that does not fall into the conventional Luttinger liquid paradigm. We discuss a scheme for the observation of this new phase using cavity-mediated long-range interactions with cold atoms. Our findings raise fundamental questions on how to study the thermodynamics of long-range interacting quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.