Abstract
With the development of gas turbine, the secondary flow loss in vane passage is getting higher. To reduce the strength of secondary flows within vane passage, endwall 3D contouring is an effective design. Endwall 3D contouring can lead to significant changes in the secondary flow vortices, which lead to changes on jet-to-secondary flow interaction and then changes on the film cooling effectiveness. Meanwhile, the geometry configuration of the contoured endwall, such as the rising and falling on the endwall, can also have an impact on film cooling performance. As a result, the film cooling performance on contoured endwall differs from that on flat endwall. Understanding the difference in film cooling characteristics on the contoured endwall and flat endwall may help to make better endwall contouring design and better endwall film cooling arrangement. The present experiment compares the film cooling effectiveness of cylindrical hole injections at different locations on 3D contoured endwall versus flat endwall in an NGV (nozzle guide vane) passage. The measurement is performed in a low speed wind tunnel with a F-class annular sector NGV cascade. The cylindrical hole injections are located as 4 different rows at −30% axial chord, 30% axial chord, 50% axial chord and 70% axial chord. Endwall pressure distribution is measured with pressure taps by pressure sensor while film cooling effectiveness is measured using PSP (Pressure Sensitive Paint). Two density ratios with 1.0 and 1.5 and several average blowing ratios are investigated. Effects of endwall contouring, density ratio and blowing ratio on film cooling effectiveness are obtained and the results are presented and explained in this investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.