Abstract

ObjectivesThis study conducted a meta-analysis to assess the effectiveness, stability, and safety of mild therapeutic hypothermia (TH) induced by endovascular cooling (EC) and surface cooling (SC) and its effect on ICU, survival rate, and neurological function integrity in adult CA patients.MethodsWe developed inclusion criteria, intervention protocols, results, and data collection. The results included outcomes during target temperature management as well as ICU stay, survival rate, and neurological functional integrity. The characteristics of the included population and each study were analyzed.ResultsFour thousand nine hundred thirteen participants met the inclusion criteria. Those receiving EC had a better cooling efficiency (cooling rates MD = 0.31[0.13, 0.50], p < 0.01; induced cooling times MD = − 90.45[− 167.57, − 13.33], p = 0.02; patients achieving the target temperature RR = 1.60[1.19, 2.15], p < 0.01) and thermal stability during the maintenance phase (maintenance time MD = 2.35[1.22, 3.48], p < 0.01; temperature fluctuation MD = − 0.68[− 1.03, − 0.33], p < 0.01; overcooling RR = 0.33[0.23, 0.49], p < 0.01). There were no differences in ICU survival rate (RR = 1.22[0.98, 1.52], p = 0.07, I2 = 0%) and hospital survival rate (RR = 1.02 [0.96, 1.09], p = 0.46, I2 = 0%), but EC reduced the length of stay in ICU (MD = − 1.83[− 3.45, − 0.21], p = 0.03, I2 = 49%) and improved outcome of favorable neurological function at discharge (RR = 1.15[1.04, 1.28], p < 0.01, I2 = 0%). EC may delay the hypothermia initiation time, and there was no significant difference between the two cooling methods in the time from the start of patients’ cardiac arrest to achieve the target temperature (MD = − 46.64[− 175.86, 82.58]). EC was superior to non-ArcticSun in terms of cooling efficiency. Although there was no statistical difference in ICU survival rate, ICU length of stay, and hospitalization survival rate, in comparison to non-ArcticSun, EC improved rates of neurologically intact survival (RR = 1.16 [1.01, 1.35], p = 0.04, I2 = 0%).ConclusionsAmong adult patients receiving cardiopulmonary resuscitation, although there is no significant difference between the two cooling methods in the time from the start of cardiac arrest to achieve the target temperature, the faster cooling rate and more stable cooling process in EC shorten patients’ ICU hospitalization time and help more patients obtain good neurological prognosis compared with patients receiving SC. Meanwhile, although EC has no significant difference in patient outcomes compared with ArcticSun, EC has improved rates of neurologically intact survival.

Highlights

  • Patients with disordered consciousness who are admitted to the intensive care unit (ICU) for further treatment after out-of-hospital cardiac arrest (OHCA) resuscitation still have an undefined prognosis, high risk of death, and severe damage to nervous system function [1]

  • Inclusion and exclusion criteria Inclusion criteria: (1) all studies were full-text articles published in index journals and included in-hospital cardiac arrest (IHCA) or out-of-hospital cardiac arrest (OHCA) adult patients who remained comatose after cardiopulmonary resuscitation (CPR); (2) all studies compared endovascular cooling (EC) and surface cooling (SC) after CA, and the body temperature should not be lower than 34 °C before the induction of cooling; (3) all studies included patients with CA caused by cardiac or non-cardiac factors and arrhythmia including ventricular fibrillation (VF), ventricular tachycardia (VT), pulseless electrical activity (PEA), and asystole; and (4) the results include cooling efficiency, body temperature maintenance stability, rewarming efficiency, the length of stay in the ICU, ICU survival rate, hospital survival rate, and favorable neurological function at discharge

  • In order to ensure the accuracy of the results, we further analyzed the time from the start of patients’ cardiac arrest to achieving the target temperature, and found that under this calculation method, there was no significant difference between the two cooling methods in the time from the start of patients’ cardiac arrest to achieving the target temperature (MD = − 46.64[− 175.86, 82.58])

Read more

Summary

Introduction

Patients with disordered consciousness who are admitted to the intensive care unit (ICU) for further treatment after out-of-hospital cardiac arrest (OHCA) resuscitation still have an undefined prognosis, high risk of death, and severe damage to nervous system function [1]. Relevant studies have shown that the induction of mild hypothermia after admission can improve the neurological function prognosis and improve the survival rate of the patients [8, 9]. The 2015 European Resuscitation Council Guidelines for Resuscitation state that TH may benefit OHCA patients with initial shockable rhythms after the return of spontaneous circulation (ROSC) [10]. A related metaanalysis reviewed 1974 articles, including 6 randomized controlled trials (RCTs) and 8 observational studies, and showed low-quality evidence supporting the finding that OHCA survivors with initial shockable rhythms can improve their survival rate and neurological functional prognosis after hypothermia is induced and maintained for 18–24 h at 32–36 °C after being admitted to hospital [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call