Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances that alter endocrine function and cause adverse effects on an organism. EDC interference with the endocrine system leads to chronic autoimmune disorders, abnormal osteogenesis, infertility, and reproductive, neurological, cardiovascular, and metabolic disorders. Among the adverse effects of EDCs are their impact on developing fetuses and neonates. EDCs like bisphenol A (BPA), pesticides, and lead interfere with or alter sex steroid hormone synthesis and metabolism, leading to developmental delay, infertility, and urogenital carcinoma in both sexes. This review article examines the most harmful EDC, BPA, which affects the skeletal system during the embryonic period. The literature investigates the effects of BPA on various systems in our body, but the mechanism behind skeletal system development during the embryonic period is still unknown. In the present review, 25 articles were reviewed through multiple windows like PubMed, Scopus, and Web of Science. Many articles mention the effects of BPA on the skeletal system after birth and also examine reproductive system abnormalities, hereditary characteristics, excretory system malfunctions, and physical and mental illness in various mechanisms. The impact of BPA on the skeletal system causes morphological and physiological changes in developing embryos. The general ideology regarding skeletal system development and its mechanism is as follows: the formation of bone (osteocytes) is reduced by the apoptosis of precursor bone cells (osteoblasts) by the effect of BPA. EDC exposure induces the apoptosis of bone cells and inhibits the formation of osteoblasts, and long-term exposure to these chemicals will also impact immune system development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.