Abstract

Inhomogeneities caused by end restraint and insufficient drainage during conventional compression triaxial tests are analysed by a numerical method. A finite element model is presented to simulate the testing procedure. The soil-platen interaction is represented by contact elements which allow frictional sliding between contacting nodes. The soil mass is represented by the modified Cam clay model. Coupled hydro-mechanical analyses are carried out in order to simulate both drained and undrained tests. The distributions of stresses and strains in the specimen for different end conditions are compared with the ideal case where no end restraint exists, in order to find representative measuring positions in the sample. Different rates of axial strain are tested in order to study the inhomogeneities caused by insufficient drainage during drained tests. Simulated results show that both end restraint and insufficient drainage can cause the barrel-shape deformation of the specimen. Stress-strain and strength properties based on global measurements are not a good representation of the true material behaviour of one single soil element at constitutive level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.