Abstract

Nicotinic acid (niacin) can suppress lipolysis, but responses to dietary niacin have been inconsistent in cattle. Our aim was to determine if 24g/d of encapsulated niacin (EN; providing 9.6g/d of bioavailable nicotinic acid) alters lipid metabolism and productivity of transition cows. Beginning 21 d before expected calving, primiparous (n=9) and multiparous (n=13) cows (body condition score of 3.63±0.08) were sequentially assigned within parity to EN (12g provided with ration twice daily) or control through 21 d postpartum. Liver biopsies were collected on d −21, −4, 1, 7, and 21 relative to parturition. Blood samples were collected on d −21, −14, −7, −4, 1, 4, 7, 14, and 21 relative to parturition. On d 7 postpartum, a caffeine clearance test was performed to assess liver function, and on d 21 to 23 postpartum, blood samples were collected every 8h to monitor posttreatment nonesterified fatty acid (NEFA) responses. Data were analyzed using mixed models with repeated measures over time. A treatment × time × parity effect was observed on prepartum dry matter intake (DMI), which was caused by a 4kg/d decrease in DMI of EN-treated multiparous cows compared with control multiparous cows during the final 4 d prepartum. A significant increase in plasma nicotinamide concentration occurred in EN-treated cows on d −7 and 21 relative to parturition. Prepartum glucose concentration decreased in treated animals, with no difference in plasma insulin concentration. Treatment × time × parity effects were detected for NEFA and β-hydroxybutyrate concentrations during the postpartum period. Plasma NEFA peaked at 1,467±160μM for control animals compared with 835±154μM for EN-treated animals. After treatments ended on d 21, no evidence was found for a plasma NEFA rebound in either parity group. A treatment × parity × time interaction was detected for liver triglyceride content, indicating a tendency for less liver triglyceride in EN-treated primiparous cows, but caffeine clearance rates were not affected by treatment. No treatment effects were observed for body condition score, body weight, energy balance, or milk or milk component production. A high dose of EN can decrease postpartum plasma NEFA concentration, but may also decrease prepartum DMI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.