Abstract

Flat-sheet membranes were fabricated by incorporating alumina (Al2O3) and functionalized multiwalled carbon nanotubes (MWCNTs; MWCNTs-COOH) in PVDF-co-HFP membrane via the phase-inversion method for application in membrane distillation (MD) application. Scanning electron microscopy and atomic force microscopy were performed on the resulting membranes to investigate the effects of functionalized MWCNTs. The results revealed that the embedding of functionalized MWCNTs led to a significant modification of the membrane characteristics, including the structural morphology, thickness, roughness, porosity, pore size, and pore size distribution. The effects of operational parameters such as the hot feed solution temperature (47–67 °C), feed flow rate (0.35–0.55 L/min), and feed concentration (0–100 g/L) on the performance of the fabricated membrane were tested using the DCMD system. The experimental results demonstrated that the permeate flux was enhanced by approximately 32.43% by using functionalized MWCNTs, reaching a value of 16.35 kg/m2 h at 35 g/L feed concentration, 67 °C hot feed temperature, and 0.55 L/min feed flow rate, at the constant temperature of 20 °C and 0.35 L/min flow rate. The functionalized MWCNTs embedded within the membrane successfully modified the interactions between water and the membrane to improve the water vapor transport while inhibiting salt penetration into the pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.