Abstract

Elevating plant density and improving N fertilizer rate for high density-tolerant genotype can maximize maize (Zea mays L.) grain productivity per unit land area. This investigation’s objective sought to evaluate the effects of stresses resulting from increasing plant density combined with reducing N application rate on traits of eight inbred lines and their diallel F1 crosses. Choosing eight maize inbred lines differing in tolerance to low N and high density (D) were samples for diallel crosses. Parents and crosses’ evaluation ensued in the 2020 and 2021 seasons under three plant densities: low (47,600), medium (71,400), and high (95,200) plants/ha, and three N fertilization rates: low (95 kg N/ha), medium (285 kg N/ha), and high (476 kg N/ha). Elevating plant density from 47,600 to 71,400 and 95,200 plants/ha caused a significant decrease in grain yield/plant by 25.43% and 30.15% for inbred parents and 17.92% and 25.65% for F1 crosses, respectively. This reduction correlated with significant decreases in all yield components but caused a notable increase in grain yield/ha by 13.69% and 27.33% for inbreds and 20.99% and 44.69% for F1 crosses, respectively. The best combination of plant population density and N level for giving the highest grain yield/ha was high N (476 kg N/ha) × high density (95,200 plants/ha) for all inbreds and all F1 crosses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.