Abstract

Acidic deposition in high-elevation forests in the Appalachian Mountains of the eastern United States has been implicated in the decline of red spruce (Picea rubens Sarg.). Elevated soil acidity may increase soil Al availability and toxicity to roots. Enhanced soil solution NO(3) (-) concentrations, resulting from precipitation inputs and enhanced soil organic matter mineralization, may exacerbate Al toxicity by increasing root Al uptake. We exposed red spruce seedlings to 350, 500, 800 or 1400 micro M NO(3) (-) and 0 or 200 micro M Al in a factorial design in sand-nutrient solution culture to test if increased NO(3) (-) concentrations enhance Al uptake and toxicity. In addition to significant reductions in seedling growth parameters resulting from Al exposure, we found significant interactions between NO(3) (-) and Al for seedling height growth rate, needle weight, shoot weight and root weight. Differences in these parameters between Al treatments became more pronounced as solution NO(3) (-) concentration increased and reflected an Al-mediated inhibition of seedling response to increasing NO(3) (-) concentration. Solution NO(3) (-) concentrations above 500 micro M induced root nitrate reductase (NR) activity, whereas shoot NR activity increased in response to NO(3) (-) up to 500 micro M and declined above that concentration. In contrast, exposure to Al depressed NR activity of roots but tended to stimulate needle NR activity. Foliar N concentrations increased in seedlings grown in cultures containing between 350 and 500 micro M NO(3) (-), with no change above 500 micro M. Increasing concentrations of NO(3) (-) depressed foliar P concentrations, with reductions being greatest in seedlings exposed to 1400 micro M NO(3) (-). Exposure to Al increased foliar Ca, K and Al concentrations, decreased foliar P concentrations, and inhibited increases in foliar Mg concentration in response to increasing NO(3) (-). The consistent interactions between NO(3) (-) and Al for growth, root NR activity and foliar Mg concentration were the result of an inhibition of seedling response to NO(3) (-) mediated by Al in solution, rather than enhanced Al toxicity resulting from growth in the presence of elevated NO(3) (-) concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.