Abstract

The impact of elevated CO₂, periodic drought and warming on photosynthesis and leaf characteristics of the evergreen dwarf shrub Calluna vulgaris in a temperate heath ecosystem was investigated. Photosynthesis was reduced by drought in midsummer and increased by elevated CO₂ throughout the growing season, whereas warming only stimulated photosynthesis early in the year. At the beginning and end of the growing season, a T × CO₂ interaction synergistically stimulated plant carbon uptake in the combination of warming and elevated CO₂. At peak drought, the D × CO₂ interaction antagonistically down-regulated photosynthesis, suggesting a limited ability of elevated CO₂ to counteract the negative effect of drought. The response of photosynthesis in the full factorial combination (TDCO₂) could be explained by the main effect of experimental treatments (T, D, CO₂) and the two-factor interactions (D × CO₂, T × CO₂). The interactive responses in the experimental treatments including elevated CO₂ seemed to be linked to the realized range of treatment variability, for example with negative effects following experimental drought or positive effects following the relatively higher impact of night-time warming during cold periods early and late in the year. Longer-term experiments are needed to evaluate whether photosynthetic down-regulation will dampen the stimulation of photosynthesis under prolonged exposure to elevated CO₂.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.