Abstract

Pyropia haitanensis, a commercially important species, was cultured at two CO2 concentrations (390×10−6 and 700×10−6 (parts per million)) and at low and high nutrient levels, to explore the effect of elevated CO2 on the species under nutrient enrichment. Results show that in CO2-enriched thalli, relative growth rate (RGR) was enhanced under nutrient enrichment. Elevated CO2 decreased phycobiliprotein (PB) contents, but increased the contents of soluble carbohydrates. Nutrient enrichment increased the contents of chlorophyll a (Chl a) and PB, while soluble carbohydrate content decreased. CO2 enrichment enhanced the relative maximum electronic transport rate and light saturation point. In nutrient-enriched thalli the activity of nitrate reductase (NRA) increased under elevated CO2. An instantaneous pH change in seawater (from 8.1 to 9.6) resulted in reduction of NRA, and the thalli grown under both elevated CO2 and nutrient enrichment exhibited less pronounced reduction than in algae grown at the ambient CO2. The thermal optima of NRA under elevated CO2 and/or nutrient enrichment shifted to a lower temperature (10–15°C) compared to that in ambient conditions (20°C). We propose that accelerated photosynthesis could result in growth increment. N assimilation remained high in acidified seawater and reflected increased temperature sensitivity in response to elevated CO2 and eutrophication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.