Abstract

Elevated CO2 and use of endophytic microorganisms have been considered as efficient and novel ways to improve phytoextraction efficiency. However, the interactive effects of elevated CO2 and endophytes on hyperaccumulator is poorly understood. In this study, a hydroponics experiment was conducted to investigate the combined effect of elevated CO2 (eCO2) and inoculation with endophyte SaMR12 (ES) on the photosynthetic characteristics and cadmium (Cd) accumulation in hyperaccumulator Sedum alfredii. The results showed that eCO2 × ES interaction promoted the growth of S. alfredii, shoot and root biomass net increment were increased by 264.7 and 392.3%, respectively, as compared with plants grown in ambient CO2 (aCO2). The interaction of eCO2 and ES significantly (P < 0.05) increased chlorophyll content (53.2%), Pn (111.6%), Pnmax (59.8%), AQY (65.1%), and Lsp (28.8%), but reduced Gs, Tr, Rd, and Lcp. Increased photosynthetic efficiency was associated with higher activities of rubisco, Ca2+-ATPase, and Mg2+-ATPase, and linked with over-expression of two photosystem related genes (SaPsbS and SaLhcb2). PS II activities were significantly (P < 0.05) enhanced with Fv/Fm and Φ(II) increased by 12.3 and 13.0%, respectively, compared with plants grown in aCO2. In addition, the net uptake of Cd in the shoot and root tissue of S. alfredii grown in eCO2 × ES treatment was increased by 260.7 and 434.9%, respectively, due to increased expression of SaHMA2 and SaCAX2 Cd transporter genes. Our results suggest that eCO2 × ES can promote the growth of S. alfredii due to increased photosynthetic efficiency, and improve Cd accumulation and showed considerable potential of improving the phytoextraction ability of Cd by S. alfredii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.