Abstract

Climate change could alter terrestrial ecosystems, which are important sources and sinks of the potent green‐house gases (GHGs) nitrous oxide (N2O) and methane (CH4), in ways that either stimulate or decrease the magnitude and duration of global warming. Using manipulative field experiments, we assessed how N2O and CH4 soil fluxes responded to a rise in atmospheric carbon dioxide (CO2) concentration and to increased air temperature. Nitrous oxide and CH4 responses varied greatly among studied ecosystems. Elevated CO2 often stimulated N2O emissions in fertilized systems and CH4 emissions in wetlands, peatlands, and rice paddy fields; both effects were stronger in clayey soils than in sandy upland soils. Elevated temperature, however, impacted N2O and CH4 emissions inconsistently. Thus, the effects of elevated CO2 concentrations on N2O and CH4 emissions may further enhance global warming, but it remains unclear whether increased temperature generates positive or negative feedbacks on these GHGs in terrestrial ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.