Abstract

Effects of rising atmospheric CO2 concentrations on gas exchange, growth and productivity were investigated on an important grassland species, Trifolium repens L. cv. Blanca. Pure stands of this species were cultivated over an entire growing season in small acrylic greenhouses with an artificial atmosphere of ±367 or ±620 ppm CO2, respectively. Effects on growth and development were examined in a functional growth analysis, while consequences for gas exchange were determined by photosynthesis and transpiration measurements on canopy level. The stands were regularly clipped for production assessment. Canopies grown at high CO2 levels showed an average increase in productivity of almost 75%. Growth analysis indicated development of a larger foliage area as the major cause, particularly in the first days of regrowth after cutting. The growth advantage that began in this stage was maintained or bettered during the following weeks. The difference between gas exchange measurements expressed per unit leaf area and per unit ground area suggested that changes in net photosynthesis and respiration did not contribute to the increase in total yield. Transpiration declined under high CO2 if expressed on a leaf area basis but total canopy transpiration was at least as large as in ambient CO2 due to the larger leaf area. Water-use efficiency calculations on the summer data indicated a 35% improvement with a doubling of CO2 concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call