Abstract
The two-temperature model has been applied to investigate the effects of the electronic subsystem on 150 keV Ni ion cascades in nickel using molecular dynamics simulation. We explore the effects of the magnitude of the electron-phonon coupling and the electronic thermal conductivity on defect production and cluster formation. It has been found that stronger electron-phonon coupling allows larger and more rapid energy feedback to the atomic subsystem, leading to reduction of number of point defects and suppression of the formation of larger defect clusters. It was observed that larger electronic thermal conductivity results in slightly increased number of point defects and larger size vacancy clusters. The latter takes place because of suppression of point defects recombination in faster cooling areas of initial damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.