Abstract

We study the effects of electron beam velocity spread, temperature, and self-fields on dispersion relation and growth rate in a Cherenkov radiation when an axial magnetic field is present. A generalized dispersion relation is derived and shown that in addition to cyclotron, FEL, and beam modes there are two other modes which are induced by thermal velocity of electron beam. For cyclotron mode, the effects of electron beam self-fields on the growth rate are investigated and shown that the growth rate in the presence of self-fields has a maximum value which is considerably greater than the saturation value of growth rate in the absence of self-fields. The optimum value of axial magnetic field at which the maximum growth can take place is determined for different electron beam densities. Then the effects of electron beam velocity spread and temperature on growth rate are studied and it is found that the electron beam temperature causes an increment in growth rate, while the velocity spread of electron beam has an opposite effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.