Abstract

This study introduced trimethylolpropane trimethacrylate into ultra-high molecular weight polyethylene fibers through supercritical CO2 pretreatment before the fibers were irradiated under an electron beam. Significant differences, emerging in the ultra-high molecular weight polyethylene fibers’ gel content, mechanical properties, and creep property according to their different irradiation doses, were studied through one-way analysis of variance. Regression equations were established between the irradiation dose and the gel content, breaking strength, elongation at break, and creep rate by regression analysis. A reasonable irradiation dosage range was determined after a verification experiment and the impact trends were analyzed; additionally, the sensitized irradiation crosslinking mechanism of ultra-high molecular weight polyethylene fibers was preliminarily examined. Then the surface morphology, chemical structures, thermal properties, and crystal properties of treated ultra-high molecular weight polyethylene fibers were measured. The results showed that as the irradiation dose increased, the gel content first rose and then declined; the breaking strength decreased continuously; the elongation at break increased at first and then decreased; and the creep rate originally fell and then rose before finally declining slowly. Electron beam irradiation had a significant etching effect on the fibers’ surface, and both the melting point and crystallinity decreased slightly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call