Abstract

The effects of electrolytes on electrochemical behavior from an oil thin layer interposed between a graphite electrode and an aqueous solution phase were examined. A hydrophobic electroactive species, tetrachloro-1,4-benzoquinone (TCQ), in a benzonitrile (EN) layer was employed to study ion transfer properties across the BN-water interface. Experimental results showed that hydrophobic cations as well as anions could be successfully used as ionic charge carriers. The addition of various salts into either the oil layers or the aqueous solutions offers deeper insight for the electrochemistry of the liquid thin layer system. When aqueous perchloric acid is interfaced with the BN films, the perchlorate ion of tetrahexylammonium perchlorate (THAP) substantially suppresses the dissociated proton concentration in the layer by the common ion effect while there is only a little change in the total acid concentration. Further approach by theoretical calculation makes it possible to quantitatively understand the effect of the electrolytes to the electrochemical responses of TCQ, which were previously reported (Anal. Chem. 73, 337 (2001)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.