Abstract

Hydrocarbon contaminated soil and groundwater is considered to be a leading cause for increased health risk and environmental contamination. Therefore, an efficient technique is needed to retard the movement or enhance the removal of the contaminant depending on the remediation objective. The goals of this study were to evaluate the impact of the addition of a cationic surfactant on the movement of hydrocarbons within a contaminated clay soil subjected to electrokinetic treatment. Water-flushing and surfactant-flushing experiments were conducted on one-dimensional soil columns. The model diesel fuel was composed of a mixture of benzene, toluene, ethylbenzene, xylenes [BTEX] and three selected polycyclic hydrocarbons [PAHs]. In the water-flushing experiments, the application of an electrokinetic treatment was found to enhance the removal of PAHs from the clay columns by about 20%. In contrast, the application of an electrokinetic treatment, when coupled with cationic surfactant-flushing, retarded the movement of BTEX and the three selected PAHs in the clay columns. Hydraulic columns with surfactant (CTAB) removed 17% more naphthalene and 11% more 2-methylnaphthalene compared to columns subjected to electrokinetic treatment with CTAB. The flux through the electrokinetic columns during water flushing as well as surfactant flushing was higher than the flux due to hydraulic gradient alone. As the solubility of hydrocarbons increased, they moved farther with electrokinetic treatment without CTAB. However, with CTAB the electrokinetic treatment tends to retard the movement. Use of a cationic surfactant coupled with electrokinetic treatment was found to retard the movement of contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.