Abstract

The effects of three types of electrically-inert fillers, calcium carbonate (CaCO3), talc and glass fiber (GF), on electrical resistivity, crystallization behavior and dynamic mechanical properties of poly(m-xylene adipamide) (MXD6)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivity of MXD6/MWCNT composites is significantly reduced with the addition of inert fillers due to the volume-exclusion effect that leads to increased effective concentration of MWCNTs in MXD6 matrix and also due to improved MWCNT dispersion. The crystallization temperature of MXD6 increases with the addition of MWCNTs, indicating that MWCNTs can act as nucleating agent and induce crystallization of MXD6. The incorporation of inert fillers has no further effect on crystallization behavior of MXD6, but significantly improves the storage modulus of MXD6/MWCNT composite, demonstrating that CaCO3, talc and GF filled MXD6/MWCNT composites are very promising materials with not only improved electrical property but also excellent mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.