Abstract

Previously, we demonstrated that electrical stimulation of the superior ovarian nerve (SON), but not the ovarian nerve plexus (ONP), reduces the secretion rate of estradiol from the ovary via activation of alpha 2-adrenoceptors in rats. The inhibitory effect of SON on estradiol secretion may be due to reduced production of testosterone, a direct precursor of estradiol. Here, we examined the effects of electrical stimulation of the SON and the ONP on ovarian testosterone secretion in rats. On the day of estrous, ovarian venous blood samples were collected intermittently from the ovarian vein. The secretion rate of testosterone from the ovary was calculated from the difference in the testosterone concentration between ovarian venous plasma and systemic arterial blood plasma, and the rate of ovarian venous plasma flow. Stimulation of either the SON or ONP reduced the secretion rate of testosterone from the ovary. The reduction of the testosterone secretion rate by SON stimulation was not influenced by an alpha 2-adrenoceptor antagonist (yohimbine), but it was abolished by an alpha 1-adrenoceptor antagonist (prazosin). Our results show that ovarian nerves have an inhibitory role in ovarian testosterone secretion, via activation of alpha 1-adrenoceptors, but not alpha 2-adrenoceptors. This, therefore, indicates that the reduction of estradiol secretion by SON stimulation is independent of the reduction of testosterone secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.