Abstract

Ion channel gating kinetics can be described using Kramers' diffusion theory of reaction rates between several closed and open states, where transition rates between states depend exponentially on the membrane potential V. It has been suggested that transition rates have a more complex dependence on V at voltage extremes, but this has never been quantified. We measured the rate constant of the last closed to open transition in a voltage-gated ion channel and show that it does not depend exponentially on membrane potential at values of V greater than ≈150 mV. To explain this behavior, we estimate the effects of electrical polarization of the water contained in crevices within the channel protein, using an electrostatic model of the approximate three-dimensional geometry and the nonlinear effects of charges on the polarization of water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.