Abstract

The aim of the present study was to investigate the extent to which skin receptors might influence the responses of primary muscle spindle afferents via reflex actions on the fusimotor system. The experiments were performed on 43 cats anaesthetized with α-chloralose. The alterations in fusimotor activity were assessed from changes in the responses of the muscle spindle afferents to sinusoidal stretching of their parent muscles (triceps surae and plantaris). The mean rate of firing and the modulation of the afferent response were determined. Control measurements were made in absence of any cutaneous stimulation. Tests were made (a) during physiological stimulation of skin afferents of the ipsilateral pad or of the contralateral hindlimb, or (b) during repetitive electrical stimulation of the sural nerve in the ipsilateral hindlimb, or of sural or superficial peroneal nerve in the contralateral hindlimb. Of the total number of 113 units tested with repetitive electrical stimulation of the ipsilateral sural nerve (at 20 Hz), 24.8% exhibited predominantly dynamic fusimotor reflexes, 5.3% mixed or predominantly static fusimotor reflexes. One unit studied in a preparation with intact spinal cord exhibited static reflexes at low stimulation intensities and dynamic ones at higher stimulation strengths. The remaining units (69%) were uninfluenced. When the receptor-bearing muscle was held at constant length and a train of stimuli (at 20 Hz) was applied to the ipsilateral sural nerve, the action potentials in the primary muscle spindle afferent could be stimulus-locked to the 3rd or 4th pulse in the train (and to the pulses following thereafter), with a latency of about 24 ms from the effective pulse. This 1 : 1 pattern of driving seemed to be mediated via static and/or dynamic fusimotor neurons. Natural stimulation influenced comparatively few units (3 of 65 units tested from the ipsilateral pad and 10 of 98 tested from the contralateral hindlimb), but when the effects were present they were quite large. The results are discussed in relation to previous studies on reflex control of fusimotor neurones from cutaneous afferents. It is suggested that the wide range of fusimotor effects from cutaneous afferent fibres observed in this study (from complete absence of any effect, via moderate excitatory and inhibitory effects, to the ‘driving pattern’, i.e. pulse-to-pulse response) may reflect that different γ-motoneurones have individualized reflex profiles 10,33,34,36, and it may also indicate that groups of fusimotor neurones and spindle afferents play specific roles in different motor acts 39.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call