Abstract

Fracture nonunion is a common and challenging complication. Although direct current stimulation has been suggested to promote fracture healing, differences in cell density near the positive and negative electrodes have been reported during direct current stimulation. This study aimed to explore the effects of these differences on osteoblast proliferation and fracture healing. MC3T3-E1 cells were stimulated by positive and negative charges to observe cell proliferation, apoptosis, and osteogenic factor expression in vitro, while positive and negative charges were connected to the Kirschner wires of the fractures in an in vivo double-toe fracture model in New Zealand white rabbits and fracture healing was assessed in digital radiography (DR) examinations performed on days 1, 15, 30. Bone tissue samples of all rabbits were analysed histologically after the last examination. The results showed that in comparison with the control group, after DC stimulation, the number of cells near the positive electrode decreased significantly (P < 0.05), apoptosis increased (P < 0.05), the expression of osteocalcin, osteoblast-specific genes, and osteonectin decreased significantly near the positive electrode (P < 0.05) and increased significantly at the negative electrode (P < 0.05). The fracture at the positive electrode junction of New Zealand white rabbits did not heal. Histomorphological analysis showed more bone trabeculae and calcified bone in the bone tissue sections of the control group and the negative electrode group than in the positive electrode group. The bone trabeculae were thick and showed good connections. However, positive charge inhibited osteoblast proliferation and a positive charge at fracture sites did not favour fracture healing. Thus, a positive charge near the fracture site may be a reason for fracture nonunion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.