Abstract

Ligaments assist trunk muscles in balancing external moments and providing spinal stability. In absence of the personalized material properties for ligaments, finite element (FE) models use dispersed data from the literature. This study aims to investigate the relative effects of eight different ligament property datasets on FE model responses. Eight L4-L5 models distinct only in ligament properties were constructed and loaded under moment (15Nm) alone or combined with a compressive follower load (FL). Range of motions (RoM) of the disc-alone model matched well in vitro data. Ligament properties significantly affected only sagittal RoMs (∼3.0–7.1° in flexion and ∼3.8–5.8° in extension at 10Nm). Sequential removal of ligaments shifted sagittal RoMs in and out of the corresponding in vitro ranges. When moment was combined with FL, center of rotation matched in vivo data for all models (3.8±0.9mm and 4.3±1.8mm posterior to the disc center in flexion and extension, respectively). Under 15Nm sagittal moments, ligament strains were often smaller or within the in vitro range in flexion whereas some posterior ligament forces approached their failure forces in some models. Ligament forces varied substantially within the models and affected the moment-sharing and internal forces on the disc and facet joints. Intradiscal pressure (IDP) had the greatest variation between models in extension. None of the datasets yielded results in agreement with all reported measurements. Results emphasized the important role of ligaments especially under larger moments and the need for their accurate representation in search for valid spinal models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.