Abstract

Ethylenediaminetetraacetic acid (EDTA) is commonly used during the preparation of obstructed root canals that face a high risk of root perforation. Such perforations may be repaired with mineral trioxide aggregate (MTA). Due to EDTA's ability to chelate calcium ions, we hypothesized that EDTA may disrupt the hydration of MTA. Using scanning electron microscopy and energy-dispersive x-ray spectroscopy, we found that MTA specimens stored in an EDTA solution had no crystalline structure and a Ca/Si molar ratio considerably lower than those obtained for specimens stored in distilled water and normal saline. Poor cell adhesion in EDTA-treated MTA was also noted. X-ray diffraction indicated that the peak corresponding to portlandite, which is normally present in hydrated MTA, was not shown in the EDTA group. The microhardness of EDTA-treated specimens was also significantly reduced (p < 0.0001). These findings suggest that EDTA interferes with the hydration of MTA, resulting in decreased hardness and poor biocompatibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.