Abstract

This research investigates the effects of barriers, sidewalks, and diaphragms (secondary elements) on bridge structure ultimate capacity and load distribution. Simple-span, two-lane highway girder bridges with composite steel and prestressed concrete girders are considered. The finite-element method is used for structural analysis. For the elastic range, typical secondary elements can reduce girder distribution factors (GDF) between 10 and 40%, depending on stiffness and bridge geometry. For the inelastic response, steel is modeled using von Mises yield criterion and isotropic (work) hardening. Concrete is modeled with a softening curve in compression with the ability to crack in tension. At ultimate capacity, typical secondary elements can reduce GDF an additional 5 to 20%, and bridge system ultimate capacity can be increased from 1.1 to 2.2 times that of the base bridge without secondary elements, depending on bridge geometry and secondary-element dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call