Abstract

The purpose was to examine the effect of 6-week eccentric single-leg decline squat (SLDSe) training with two technical execution times (3 s or 6 s) on changes related to the structural properties of the vastus lateralis (VL) and patellar tendon (PT). Thirty-six physical active volunteers were randomly divided into three groups: control group (CG, n = 13, age = 20.8 ± 1.9 years, no intervention program), experimental group 1 (EG1, n = 11, age = 21.6 ± 2.5 years, execution time = 6 s) and experimental group 2 (EG2, n = 12, 21.1 ± 1.2 years, execution time = 3 s). Participants completed a 6-week SLDSe training program (80% of 1-RM) three days a week. The structural characteristics of the VL and the PT were measured with ultrasonography before and after 6-week SLDSe training and after 6 weeks of de-training. Our results indicate that EG1 increased ≈21.8% the thickness of the PT and EG2 increased ≈15.7% the thickness of the VL after the 6-week intervention program. EG1 and EG2 showed greater values (p < 0.05) of lean mass and lower values (p < 0.05) of fat percentage on the thigh after the intervention program. In conclusion, the SLDSe training carried out with the execution time of 6 s had greater effects on the structural and elastic properties of the PT, and the exercise with the execution time of 3 s caused greater structural adaptations in the VL musculature.

Highlights

  • In recent years, the analysis of the use of eccentric exercises as a prevention and treatment modality for the recovery of injuries, mainly muscle and tendon injuries, has increased in the scientific literature [1,2]

  • The participants were randomly divided into 3 groups: control group (CG) made up of 13 subjects, who did not carry out the intervention program; experimental group 1 (EG1) formed by 13 subjects (2 were lost during the follow-up of the study), who carried out the intervention program for 6 weeks, performing the eccentric repetition of the SLDSe during 6 s; and experimental group 2 (EG2) formed by 13 subjects (1 was lost during the follow-up of the study), who carried out the same eccentric training program as EG1 but eccentric repetition of the SLDSe during 3 s (Figure 1)

  • The patellar tendon (PT) thickness was 0.08 ± 0.05 cm (IC 95%, from 0.04 to 0.11 cm, p < 0.001, ES = 1.3) greater in EG1 in POST-1 compared to program began (PRE) and 0.06 ± 0.07 cm (IC 95%, from 0.01 to 0.11 cm, p = 0.011, ES = 0.9) lower in POST-2 compared to POST-1

Read more

Summary

Introduction

The analysis of the use of eccentric exercises as a prevention and treatment modality for the recovery of injuries, mainly muscle and tendon injuries, has increased in the scientific literature [1,2]. Eccentric training can lead to greater strength gains because it implies a lower energy cost to develop a certain load [4]. There are several mechanisms by which eccentric exercises can lead to better results than concentric training in hypertrophy [5,6]. The effects of eccentric exercises on the neuromuscular system have been evaluated in different studies [7,8]. Long-term eccentric exercise programs are characterized by giving rise to a series of functional adaptations that appear in the muscle. Taken together, these adaptations can have important applications for injured people or for those athletes who want to improve their performance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call