Abstract

It has been found that under oxygen partial pressure of ~2×10-6 kPa, the high-temperature oxidation of thermal barrier coatings (TBCs) occurred during an electron beam physical vapor deposition (EB-PVD) process for producing the TBCs top ceramic coating. In the present investigation, two modified bond coats (BCs) of NiCrAlY with Si addition, and NiCrAlY with Co and Hf additions, were developed by Arc Ion-plating technique to study the effects of the EB-PVD process on thermally grown oxide (TGO) formation and growth. The isothermal and cyclic oxidation tests were conducted and the cross-sectional morphologies of the specimens were examined to compare the high-temperature oxidation behaviors of the two TBCs. It was found that a mixed oxide layer have been developed in the as-deposited TBCs with a NiCrAlYSi BC. The mixed oxide layer mainly included Cr2O3, NiO, Al2O3 and their spinel. With the mixed oxide layer, TBCs with the NiCrAlYSi BC showed a superior high-temperature resistance on later high-temperature exposure to TBCs with NiCoCrAlYHf BC, where no mixed oxide layer was observed. The pre-formed mixed oxide layer apparently shortened the time to fully develop a protective α-Al2O3 layer and therefore restrained the TGO growth in TBCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.