Abstract

Late blight is an important constraint to potato production and genotype resistance is an effective disease control mesure. Ten late blight resistant potato genotypes (R-gene free) were assessed for yield performance and stability at early (90 days) and late harvest (120 days) at two locations in Kenya during two years. Significant differences (P ≤ 0.05) in area under disease progress curves (AUDPC) were detected among potato genotypes. Resistant genotypes free of R-genes had significantly (P ≤ 0.05) higher yield at late than early harvest, perhaps due to increased tuber bulking period. The rank of genotypes for AUDPC, late blight resistance, and tuber yield varied across seasons and locations (environment). Additive main effects and multiplicative interaction (AMMI) analysis of tuber yield and late blight resistance resulted in significant (P ≤ 0.05) effects of genotypes (G) and environments (E). The proportion of genotypic variance was larger than the environmental variance and the G × E interactions. For tuber yield, the G, E, and G × E interactions accounted for 42.9, 39.6 and 17.5%; and 53.4, 29.7, and 16.9% at early and late harvests, respectively. For AUDPC, G, E, and G × E accounted for 80.2, 5.0, and 14.8%; as well as 82.3, 4.6, and 13% for early and late harvests, respectively. The resistance of potato genotypes without R-genes varied. Selective deployment of resistant genotypes can improve potato tuber yield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call