Abstract

BackgroundThe purpose of this study is to evaluate the wear and fracture strength of crowns and three-unit partial fixed dental prosthesis (FDP) fabricated using by Bruxzir and Incoris TZI as recently introduced monolithic zirconia materials.MethodsA total of sixteen crowns and sixteen three-unit FDPs were fabricated using Bruxzir and Incoris TZI (n = 8). All specimens were subjected to a 2-body wear test in a dual axis chewing simulator for 1,200,000 loading cycles against steatite antagonist balls. The fracture strength and volumetric loss were recorded. The obtained data were statistically analyzed by 2-way ANOVA testing (α = 0.05).ResultsThe mean volumetric loss of the crowns was higher than that of the three-unit FDPs (p < 0.05). Of the two monolithic systems, Incoris TZI exhibited more wear than Bruxzir. The fracture strengths of Bruxzir crowns and FDPs were found to be higher than those of the crowns and FDPs fabricated with Incoris TZI (p < 0.05).ConclusionIn in vitro test conditions, Bruxzir and Incoris TZI monolithic zirconia systems are fracture-resistant for the crown and FDP application against physiologic chewing forces owing to dynamic aging. Among newly developed monolithic zirconia materials, Bruxzir is found to be more resistant to fracture compared to the Incoris TZI.

Highlights

  • The purpose of this study is to evaluate the wear and fracture strength of crowns and three-unit partial fixed dental prosthesis (FDP) fabricated using by Bruxzir and Incoris TZI as recently introduced monolithic zirconia materials

  • Thirty-two master model dies were obtained, including sixteen master casts that were made as crowns and sixteen master casts that were made as three-unit FDPs; the model dies were fabricated with Bruxzir (Glidewell Laboratories, CA, USA) and Incoris TZI (Sirona Dental Systems GmbH, Bensheim, Germany) (n = 8)

  • Short-term data is available on zirconia FDPs, a recent study showed that monolithic polished zirconia crowns caused less wear on antagonist enamel than glazed ceramic metal crowns [29]

Read more

Summary

Introduction

The purpose of this study is to evaluate the wear and fracture strength of crowns and three-unit partial fixed dental prosthesis (FDP) fabricated using by Bruxzir and Incoris TZI as recently introduced monolithic zirconia materials. Major problems associated with multilayered restorations are their low fracture strength and surface chipping. New processing techniques have been developed to resolve the chipping problem encountered with ceramic veneering layers [1]. Developments in CAD-CAM (computer-aided design, and computer-aided manufacturing) technology have increased the diversity of materials that can be used for restorations. In this context, new Monolithic restorations aim at improving the final quality of restorations. The problems of surface flaws and chipping problems encountered with veneering can be resolved using monolithic zirconia restorations [2]. Zirconia restorations exhibit good mechanical properties, such as high flexural strength along with good esthetic characteristics and biocompatibility. Short-term data is available on high-strength zirconia systems, research is still needed on periodontally weakened teeth and bruxism [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call