Abstract

sd1-d has been utilized to develop short-culmed indica varieties adaptable to higher fertilizer-applications. Its tall alleles SD1-in and SD1-ja are harbored in indica and japonica subspecies, respectively. SD1-in possesses a higher effect on elongating culm than SD1-ja. The sd1-d of indica IR36 was substituted with SD1-in or SD1-ja through recurrent backcrossing with IR36, and two tall isogenic lines ("5867-36" and "Koshi-36") were developed. IR36, 5867-36 and Koshi-36 were grown in a paddy field, and the effects of sd1-d, SD1-in and SD1-ja on morphological characteristics concerning dry-matter production and photosynthesis were compared mutually. sd1-d diminished dry weight of total brown rice/m2 and total dry matter weights, but enhanced harvest indexes, compared with SD1-in. In IR36, shorter lengths of the first (flag) to third leaves, and more panicle-bearing stems, caused by sd1-d, compared with SD1-in-carrying 5867-36, and erect first leaves, not caused by sd1-d, could construct the canopy structure appropriate for obtaining a high rate of photosynthesis at an optimum LAI. Koshi-36 could be used for a mid-mother line to develop indica varieties adaptable to middle and low fertilizer-applications, due to higher effect of SD1-ja on yielding ability, compared with that of sd1-d, no breaking-type lodging, and resistances to diseases and pests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call