Abstract

Diamond-like carbon (DLC) films were prepared in a pulsed-DC discharged CH4/Ar plasma. Effects of duty cycle ([ton/(ton+toff)]×100%) on the composition and properties of DLC films were investigated. In general, the increased duty cycle led to an up-shift of the G peak position, an increase in the ID/IG and sp2/sp3 ratio, and a reduction of the number of C–H bonds and the film hardness, revealing a graphitization tendency with increasing duty cycle. Tribologically, ultralow and steady friction coefficients (0.005 and 0.008) in dry nitrogen atmosphere were obtained for the films prepared under a duty cycle of 50% and 65%. The unique mechanical property and chemical nature brought by the moderate sp2/sp3 ratio and the proper H content were considered to be responsible as the films deposited in this duty cycle range could simultaneously provide the high chemical inertness and the ultrasmooth sliding surfaces required for achieving ultralow friction. In addition, the structure was less vulnerable to water molecules in the case of stewing. The diamond-like nature and the ultralow friction performance were hardly affected even experiencing a 4-month immersion in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.