Abstract

Temporary streams make up the majority of river networks in many regions around the world. Although they are known to have non-flow periods, it is uncertain in what ways the temporal components of the non-flow period affect stream ecosystems. We analyzed how duration and frequency of the non-flow period influence the biofilm metabolism of 33 Mediterranean streams in NE Iberian Peninsula. Selected streams ranged from perennial to ephemeral, and their hydrology was characterized during a period of 150 days before the sampling. Cobbles were collected from the streams, for which the total biofilm biomass (ash-free dry mass and chlorophyll-a) and metabolism (community respiration and gross primary production) were measured. Metabolic differences were observed between both permanent and temporary streams, as well as within temporary streams. Among these, the frequency of the non-flow period did not affect biofilm biomass or metabolism, but the duration did significantly decrease autotrophic biomass and gross primary production. Severity of the non-flow period (solar radiation and maximum streambed temperature) also affected gross primary production negatively. Thus, 80% of the observed gross primary production variability among all temporary streams was explained by the total duration and the severity of the non-flow period. In contrast, community respiration in the streams was not affected by the temporal components of the non-flow period. Our results highlight the effects of different temporal components of the non-flow period on autotrophic and heterotrophic processes, indicating that longer durations of the non-flow period or high severity conditions might decrease gross primary production promoting heterotrophy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call