Abstract

To observe the effects of supplemental dietary d-α-tocopherol in relation to dietary energy on growth and immune status in dairy calves, 32 newborn Holstein bull calves were assigned to 1 of 4 treatments for 5 wk in a 2×2 factorial, randomized complete block, split-plot design. Calves received moderate growth (MG) or low growth (LG) all-milk dietary treatments, formulated to support daily gains of 0.5 or 0.25kg/d, respectively, per the dietary energy recommendation for milk-fed calves according to the National Research Council’s Nutrient Requirements of Dairy Cattle. Calves in both groups were either injected i.m. with Vital E-A+D (injectable solution of vitamins E, A, and D) on d 1 and supplemented with Emcelle Tocopherol (micellized vitamin E) via milk daily (MG-S and LG-S), or were not supplemented (MG-C and LG-C) during the study period. Total weight gain of MG calves was greater than that of LG calves and tended to be greater in MG-S calves than in MG-C calves. Calves receiving vitamin supplementation demonstrated greater concentrations of plasma α-tocopherol, retinol, and 25-(OH)-vitamin D than did control calves, whereas MG calves demonstrated a lower concentration of plasma α-tocopherol than did LG calves. The apparent increased utilization of α-tocopherol by MG calves was accompanied by a rise in serum haptoglobin, a positive acute-phase protein and indicator of inflammation, especially in MG-C calves. Serum amyloid A, also a positive acute-phase protein, was not different among groups, but was elevated from baseline in all groups during wk 1 through 3. Plasma IgG1 concentrations were higher in MG-S and LG-S calves than in their nonsupplemented dietary counterparts, whereas plasma IgG2, IgA, and IgM concentrations were not different among groups. In summary, dietary supplementation of d-α-tocopherol improved plasma α-tocopherol status and tended to increase growth in calves fed for 0.5 kg of average daily gain. Vitamin supplementation ameliorated the rise of serum haptoglobin associated with acute inflammation in MG calves, and may have improved passive transfer of maternal antibody. These results indicate a role for α-tocopherol in prevention of proinflammatory state associated with greater dietary energy and onset of infectious disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call