Abstract

Due to seasonal climate alterations, the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles. The X-ray micro computed tomography (micro-CT) acted as a non-destructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles. Subsequently, the variations of pore distribution and permeability due to dry-wet cycling effects were revealed based on three-dimensional (3D) pore distribution analysis and seepage simulations. According to the results, granite residual soils could be separated into four different components, namely, pores, clay, quartz, and hematite, from micro-CT images. The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during dry-wet cycles. The values of porosity and connectivity are positively correlated with the number of dry-wet cycles, which were expressed by exponential and linear functions, respectively. The pore volume probability distribution curves of granite residual soil coincide with the χ 2 distribution curve, which verifies the effectiveness of the assumption of χ 2 distribution probability. The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes, i.e. micropores, mesopores, macropores, and cracks. From a quantitative and visual perspective, considerable small pores are gradually transformed into cracks with a large volume and a high connectivity. Under the action of dry-wet cycles, the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly, as well as the permeability and hydraulic conductivity. The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general, verifying the accuracy of seepage simulations based on micro-CT results. • Mesostructures of residual soil under dry-wet cycles are characterized by mciro-CT. • D reconstructed models dynamically demonstrate the evolution patterns of pore structures. • The χ 2 distribution function is used to characterize pore-volume distributions. • Seepage simulations based on 3D reconstructed pore models are conducted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call