Abstract

TG-FTIR and double-shot Py-GC/MS were executed to investigate the effects of torrefaction pretreatment on microalga (Chlorella vulgaris ESP-31) pyrolysis. TG-FTIR was performed to analyze the pyrolysis and combustion gas of raw and wet torrefied microalgae, whereas double-shot Py-GC/MS was applied to investigate the product distributions of single and two-stage thermal degradation of the microalgae. From the result, wet torrefaction successfully eliminated the release of CO in the pyrolysis gas. The highest generation of C–H during pyrolysis was achieved by the microalgae pretreated with dilute sulfuric acid. In the combustion gas, the intensity of O–H absorption band was removed in the first stage after wet torrefaction. The Py-GC/MS analysis revealed that the fatty acids (48.22%) were the dominant component in the bio-oil derived from the microalgae pretreated by the dilute sulfuric acid in wet torrefaction. Meanwhile, the productivity of carbohydrate-derived products (anhydrous sugars) decreased from 18.58 to 0.39% in the pyrolytic bio-oil after the wet torrefaction pretreatment. In contrast, carbohydrate- and lipid-derived products were decreased in the bio-oil after the dry torrefaction pretreatment. Similarly, microwave-assisted wet torrefaction in sulfuric acid is an effective pretreatment technique to produce high-quality pyrolytic bio-oil for biofuel production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.