Abstract
Paraffin wax is a hydrophobic meltable material that can be suitably used in spray congealing to develop drug-loaded microparticles for sustained release, taste-masking or stability enhancement of drugs. However, these functional properties may be impaired if the drug particles are not completely embedded. Moreover, highly viscous melts are unsuitable for spray dispersion. In this study, the effects of drug particle size and lipid additives, namely stearic acid (SA), cetyl alcohol (CA) and cetyl esters (CE), on melt viscosity and extent of drug particles embedment were investigated. Spray congealing was conducted on the formulations, and the resultant microparticles were analysed for their size, drug content, extent of drug particles embedment and drug release. The melt viscosity increased with smaller solid inclusions while lipid additives decreased the viscosity to varying extents. The spray-congealed microparticle size was largely dependent on the viscosity. The addition of lipid additives to paraffin wax enabled more complete embedment of the drug particles. CA produced microparticles with the lowest drug release, followed by SA and CE. The addition of CA and CE enhanced the drug release and showed potential for taste-masking. Judicious choice of drug particle size and matrix materials is important for successful spray congealing to produce microparticles with the desired characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.