Abstract

Five-year-old trees of deciduous Quercus robur L., evergreen Q. ilex L., and their semideciduous hybrid, Q. × turneri Willd. (var. pseudoturneri), growing in pots, were subjected to drought stress by withholding water for 18–22 days, until leaf water potentials decreased below −2 MPa. Gas-exchange rates, oxygen evolution, and modulated chlorophyll (Chl) fluorescence measurements revealed that by strong stomata closure and declining photosynthetic capacity down to approximately 50%, all three taxa responded with strongly reduced photosynthesis rates. In Q. robur, photochemical quenching of the drought-stressed plants was much lower than in nonstressed controls. Dissection of the occurring events in the photosynthetic electron transport chain by fast Chl fluorescence induction analysis with the JIP-test were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call