Abstract

The effect of diffusional and photochemical limitations to photosynthesis was assessed in field-grown water-stressed grapevines (Vitis vinifera L.) by combined measurements of gas exchange and chlorophyll fluorescence. Drought was slowly induced, and the progressive decline of photosynthesis was examined in different grapevine cultivars along a continuous gradient of maximum mid-morning values of stomatal conductance (g), which were used as an integrative indicator of the water-stress conditions endured by the leaves. Initial decreases of g were accompanied by decreases of substomatal CO2 concentration (Ci), the estimated chloroplastic CO2 concentration (Cc) and net photosynthesis (AN), while electron transport rate (ETR) remained unaffected. With increasing drought, g, AN, Ci and Cc further decreased, accompanied by slight decreases of ETR and of the estimated mesophyll conductance (gmes). Severe drought led to strong reductions of both g and gmes, as well as of ETR. The apparent carboxylation efficiency and the compensation point for CO2 remained unchanged under severe drought when analysed on a Cc, rather than a Ci, basis, suggesting that previously reported metabolic impairment was probably due to decreased gmes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.