Abstract

Drip tape layout and flow rate are crucial variables that impact the effects of drip fertigation. To investigate the influence of drip tape layout and flow rate on the soil water and nitrogen transport in summer maize in sandy tidal soil, field experiments were conducted for two years. Two drip tape layouts were set: one tape serving for two crop rows (N) and one tape serving for each crop row (E), with two levels of drip flow rate, i.e., high (2 L/h; H) and low (1.3 L/h; L). The results show that under the same drip tape layout, the lower the drip emitter flow rate, the more upright the shape of wetted soil volume. The maximum vertical and horizontal water transport distance under NL treatment was higher than that under NH, EH, and EL treatments. After surface drip fertigation, nitrate nitrogen accumulated near and at the edge of the wetted soil volume. In 2020, under NL treatment, nitrate nitrogen transported to a 55 cm soil layer, which was 22.22%, 71.42%, and 57.14% deeper than that under NH, EH, and EL treatments, respectively. In 2021, nitrate nitrogen could transport to a 60 cm soil layer in both NL and NH treatments. The maximum concentration of ammonium nitrogen was nearby the emitter. Under NL treatment, ammonium nitrogen was transported to 48 and 60 cm soil layers below the emitter in 2020 and 2021, respectively, which was deeper than that observed under NH, EH, and EL treatments. The soil inorganic nitrogen residue of the NL was lower than that of the NH, EH, and EL treatments. Compared with NH, EH, and EL treatments, the two-year maize yield under NL treatment increased by 11.09%, 13.47%, and 8.66% on average, respectively. NL treatment exhibited the highest water use efficiency and nitrogen fertilizer productivity. Therefore, NL treatment (one drip tape serving for two rows with 1.3 L/h flow rate) could promote the absorption of water and nutrients, reduce inorganic nitrogen residue, and to obtain high maize yield in sandy tidal soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.