Abstract

We report the effects of dyes doped in the emitting layer on the electroluminescent characteristics of multilayer organic light-emitting diodes (LEDs) using a polysilane polymer, poly(methylphenylsilane) (PMPS), as the hole transporting material. We formed the emitting layer by dispersing in poly(styrene) (PS), one of four dyes whose fluorescence ranged from blue to orange. Two- or three-layer LEDs were prepared by combining PMPS and dye doped PS layers with the indium tin oxide and aluminum used for the hole and electron injecting electrodes, respectively. The three-layer LEDs had an additional vacuum-deposited tris-(8-hydroxyquinoline) aluminum layer. The electroluminescent (EL) characteristics of these multilayer organic LEDs, such as the current-voltage–EL intensity curve, the relative EL efficiency, and the EL emitting species, exhibit a marked dependence on the emitting dye. The observed dependence can be described consistently in terms of the dependence of the charge carrier trapping efficiency on the emitting dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.