Abstract

ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at% because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at% to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films. (Received March 4, 2016; Accepted July 22, 2016)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call