Abstract

As dopamine (DA) causes neurochemical changes in the central serotonergic system after an acute injection of methamphetamine, the present study examined the possibility that this response is mediated through dopaminergic receptors. Pretreatment with the DA receptor antagonist, haloperidol, failed to prevent the decreases in the activity of tryptophan hydroxylase and the concentration of serotonin (5-HT) in the frontal cortex, hippocampus and neostriatum 1 hr after a single administration of methamphetamine. Because methamphetamine is also a potent releaser of 5-HT, the possibility that 5-HT receptors mediate the effects of methamphetamine was evaluated. Pretreatment with methiothepin an antagonist of both DA and 5-HT receptors, failed to prevent the decline in activity of tryptophan hydroxylase but did attenuate the decreases in concentrations of 5-HT measured in the frontal cortex and hippocampus. This attenuation is not mediated through 5-HT 2 receptors, as ritanserin failed to interfere with the changes induced by methamphetamine. In addition, DA or 5-HT receptors were apparently not involved in the changes in activity of tryptophan hydroxylase and concentrations of 5-HT induced by another analogue of amphetamine, 3,4-methylenedioxymethamphetamine (MDMA). This study suggests different mechanisms are responsible for the acute and long-term changes observed in the central serotonergic system following a single or multiple doses of methamphetamine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.