Abstract
Anhedonia is characteristically preceded by chronic stress, likely involving downstream effects of glucocorticoid alterations on dopamine (DA) function. To elucidate the neural underpinnings of this interaction, we examined whether acute pharmacological modulation of DA alters reward learning after chronic mild stress (CMS). Forty-eight male Wistar rats were exposed to a 21-day CMS regime (n = 48 nostress controls) before completing the probabilistic reward task (PRT), a well-validated cross-species test of reward learning. We first examined whether stress-induced reward dysfunction could be restored by systemic injections of low-dose amisulpride (AMI), which increases DA transmission via D2-like autoreceptor blockade. Then, we investigated region-specific effects through bilateral infusions of quinpirole (QUIN), a D2-like receptor agonist, into either the nucleus accumbens core (NAcc) or medial prefrontal cortex (mPFC). Blunted reward learning in CMS animals was reversed by acute AMI administration, but this treatment did not alter reward learning in the no stress group. Elevated adrenal gland weight, a proxy for stress reactivity, predicted lower reward learning in the untreated CMS group. This effect was extinguished following AMI treatment. These findings might be attributed to significantly higher D2 receptor density in the NAcc of high stress reactive animals. To this end, NAcc QUIN infusions potentiated reward learning relative to mPFC QUIN infusions in CMS rats, but there was no effect in no stress control rats. Collectively, these findings suggest that DA modulation reverses stress-induced reward dysfunction, even among the most stress-reactive animals. The effect might depend on D2-like receptor activation in the mesolimbic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Cognitive, Affective, & Behavioral Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.