Abstract
Cocaine is an addictive psychostimulant that induces immediate early gene (IEG) expression by activating dopamine (DA) D1 and glutamate NMDA receptors in the striatum. In this study, we show that a single cocaine administration (30 mg/kg) time-dependently increases ERK phosphorylation, c-Fos and FosB protein expression, and MKP-1 phosphorylation (p-MKP-1), in the caudate–putamen (CPu) and nucleus accumbens (NAc) of Fischer rats. In the CPu, 1 h after cocaine injection, the increase in c-Fos and FosB protein expressions is totally abolished by pre-administration of DA-D1 receptor antagonist, SCH23390. In the NAc, SCH23390 also inhibits cocaine-induced c-Fos protein expression. The pre-treatment of NMDA receptor antagonist, MK801, partially reduces cocaine-activated c-Fos protein expression in the CPu. Furthermore, the escalation of p-MKP-1 after acute cocaine administration is dependent on both DA-D1 and NMDA receptor activation in both brain regions examined. Our data suggest that cocaine may modulate ERK pathway signaling through the activation of DA-D1 and NMDA receptors, subsequently influencing the IEG protein expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.