Abstract

The mechanisms involved in the progressive malfunction of the trabecular meshwork (TM) in glaucoma are not yet understood. To study age-related changes in human TM cells, we isolated primary TM cell cultures from young (ages 9, 14, and 25) and old (ages 66, 70, and 73) donors, and compared levels of oxidized proteins, autofluorescence, proteasome function, and markers for cellular senescence. TM cells from old donors showed a 3-fold increase in oxidized proteins and a 7.5-fold decrease of proteasome activity. Loss of proteasome function was not associated with decreased proteasome content but with partial replacement of the proteolytic subunit PSMB5 with the inducible subunit LMP7. Cells from old donors also demonstrated features characteristic of cellular senescence associated with phosphorylation of p38MAPK but only a modest increase in p53. These data suggest that age-related proteasome inhibition and cellular senescence could contribute to the pathophysiological alterations of the TM in glaucoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.