Abstract

Private docks are common in estuaries worldwide. Docks in Massachusetts (northeast USA) cumulatively overlie ~ 6 ha of salt marsh. Although regulations are designed to minimize dock impacts to salt marsh vegetation, few data exist to support the efficacy of these policies. To quantify impacts associated with different dock designs, we compared vegetation characteristics and light levels under docks with different heights, widths, orientations, decking types and spacing, pile spacing, and ages relative to adjacent control areas across the Massachusetts coastline (n = 212). We then evaluated proportional changes in stem density and biomass of the dominant vegetation (Spartina alterniflora and Spartina patens) in relation to dock and environmental (marsh zone and nitrogen loading) characteristics. Relative to adjacent, undeveloped habitat, Spartina spp. under docks had ~ 40% stem density, 60% stem biomass, greater stem height and nitrogen content, and a higher proportion of S. alterniflora. Light availability was greater under taller docks and docks set at a north-south orientation but did not differ between decking types. Dock height best predicted vegetation loss, but orientation, pile spacing, decking type, age, and marsh zone also affected marsh production. We combined our proportional biomass and stem elemental composition estimates to calculate a statewide annual loss of ~ 2200 kg dry weight of Spartina biomass (367 kg per ha of dock coverage). Managers can reduce impacts through design modifications that maximize dock height (> 150 cm) and pile spacing while maintaining a north-south orientation, but dock proliferation must also be addressed to limit cumulative impacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call