Abstract

DNA repair by nonhomologous end-joining (NHEJ) relies on the Ku70:Ku80 heterodimer in species ranging from yeast to man. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, Ku also controls telomere functions. Here, we show that Ku70, Ku80, and DNA-PKcs, with which Ku interacts, associate in vivo with telomeric DNA in several human cell types, and we show that these associations are not significantly affected by DNA-damaging agents. We also demonstrate that inactivation of Ku80 or Ku70 in the mouse yields telomeric shortening in various primary cell types at different developmental stages. By contrast, telomere length is not altered in cells impaired in XRCC4 or DNA ligase IV, two other NHEJ components. We also observe higher genomic instability in Ku-deficient cells than in XRCC4-null cells. This suggests that chromosomal instability of Ku-deficient cells results from a combination of compromised telomere stability and defective NHEJ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.